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For the kinetic energy of one-dimensional model finite systems the leading corrections to local approxima-
tions as a functional of the potential are derived using semiclassical methods. The corrections are simple,
nonlocal functionals of the potential. Turning points produce quantum oscillations leading to energy correc-
tions, which are completely different from the gradient corrections that occur in bulk systems with slowly
varying densities. Approximations that include quantum corrections are typically much more accurate than
their local analogs. The consequences for density functional theory are discussed.
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I. INTRODUCTION

Modern density functional theory (DFT) has become a
popular electronic-structure method because of its balance
between computational efficiency and accuracy. The original
density functional theory was that of Thomas' and Fermi®
(TF), in which all parts of the electronic Hamiltonian are
approximated by explicit density functionals, and the energy
minimized over possible densities. Typical errors in TF
theory are of order 10% of the total energy but molecules do
not bind.? In 1950s, Slater* introduced the idea of orbitals in
DFT, i.e., solving a set of single-particle equations to con-
struct the energy of the interacting system, which is typically
much more accurate. This was shown to be a formally exact
approach in the celebrated works of Hohenberg and Kohn?
and Kohn and Sham.® The latter also introduced the local
density approximation (LDA) for the only unknown needed
to solve the Kohn-Sham (KS) equations, the exchange-
correlation (XC) energy as a functional of the density. Since
then, the field has gradually evolved with improvements in
computational power, algorithms, and approximate function-
als to the workhorse it is today.’

Unfortunately, the existence theorems give no hint of how
to construct approximate functionals. Presently, there is a
dazzling number of such approximate functionals suggested
in the literature, and implemented in standard codes, both in
physics and chemistry.® Many of these are physically moti-
vated, and work well for the systems and properties for
which they were designed but usually fail elsewhere. There
appears to be no systematic approach to the construction of
these functionals, beyond artful constraint satisfaction.’

In the present paper, we return to the origins of DFT and
ask, what are the leading corrections to the original approxi-
mation of Kohn and Sham, the LDA? This is a very difficult
question that we can only aspire to answer for the XC energy
for any electronic system. In the present paper, we answer
the question for an extremely simple case but one that con-
tains many features relevant to the problems of electronic
structure.

The original works on density functional approximations
emphasize the gradient expansion,>® which is a particular
approach to improve upon a local density approximation.
Imagine an infinitely extended slowly varying gas. The cor-
rections to the local approximation are given accurately by

1098-0121/2010/81(23)/235128(14)

235128-1

PACS number(s): 71.15.Mb, 31.15.E—, 31.15.xg, 71.10.Ca

leading corrections in the density gradient. But real systems
do not look like slowly varying gases. All finite systems have
evanescent regions, as do many bulk solids. The regions can
be separated via classical turning-point surfaces, evaluated at
the Fermi energy of the system.'? Typically, such regions are
atomic sized. Most importantly, the gradient expansion fails
completely both near and outside these surfaces. Generalized
gradient approximations (GGAs) and other methods have
been developed to overcome these difficulties. These include
only a finite order of gradients but employ a form which
contains many powers of those gradients.

To study the effects of confinement to finite regions on
density functional approximations, we use noninteracting
particles, and study only their kinetic energy, which was lo-
cally approximated in the original TF theory. We study only
one dimension, where semiclassical (sc) approximations are
simple, and the WKB (Refs. 11-13) form applies in the ab-
sence of classical turning points where the potential v(x) has
finite slope. We avoid such turning points by using box
boundary conditions and studying only systems whose
chemical potential is everywhere above v(x).

The answer is surprising: for most systems, the leading
corrections (in a sense that will become clear within) are not
the simple gradient corrections commonly discussed, and
used as starting points to construct GGAs. Instead, both the
density and kinetic energy density (KED) can be very accu-
rately approximated as functionals of the potential.

The limit we discuss is also an important result in itself.
We carefully show precisely how TF becomes exact in a
semiclassical limit. Essentially, we take 2 — 0, keeping the
chemical potential u roughly fixed, and renormalizing the
density so as to retain the original particle number. If, further,
one performs a moving average over the space coordinate,
with a range chosen to be small compared to the spatial
variation in the potential but large compared to quantum os-
cillations as 7 — 0, the density uniformly converges to that of
TF theory. We call this the continuum limit of a finite system.
The separation between quantum eigenvalues becomes in-
finitesimal, and all sums become integrals. The integrands
within contain purely classical quantities in terms of the po-
tential, v(x). A similar simplification occurs for the KED,
given in terms of v(x), and when v(x) is eliminated from the
two expressions, what remains is the LDA to the kinetic
energy.

Having carefully defined this limit, we can then discuss
the approach to that limit, and the leading corrections to the
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FIG. 1. (Color online) Exact, TF, our semiclassical (sc) and
WKB density for a single particle in v(x)=—12 sin?(7x) with hard
walls at x=0 and x=1 (A=m=1).

local approximation. We find that the dominant corrections
(in 1/%) are not gradient corrections due to the variations in
v(x) in the interior but rather are quantum oscillations due to
the hard walls at the boundaries. These quantum oscillations
are generic features of any quantum system and their nature
is determined by the classical turning points.'* They give rise
to the phase corrections to the classical density of states in
the Gutzwiller trace formula,'® and will be present for any
finite quantum system. The only case in which they vanish is
that of periodic boundary conditions with the chemical po-
tential above the maximum of the potential. Only in such
systems does the gradient expansion produce the correct
asymptotic expansion in powers of 7, equivalent to gradients
of the potential. For any finite system, the series eventually
diverges but truncation at a lower order can yield highly
accurate results, if the gradients are sufficiently small.

To give some idea of the power of the methods we de-
velop, in Fig. 1 we show the density of one particle in a
simple well [v(x)=-D sin?(mx/L) in a box from 0 to L, with
D=12]. The exact density is found by numerically solving
the Schrodinger equation. The TF density is found by mini-
mizing the one-dimensional (1D) TF kinetic energy func-
tional and choosing the chemical potential to yield one par-
ticle. That density smoothly follows the potential. Due to the
hard walls there are no classical turning points where v(x)
has finite slope. Hence, a WKB treatment can be applied
here, yielding a WKB eigenvalue that is positive and reason-
ably accurate. But the result of our present analysis is a
simple formula for the density, which uses WKB wave func-
tions as input, is much more accurate still. Perhaps more
importantly, we have been unable to create situations where
our approximation completely fails.

In the electronic-structure problem, the local approxima-
tion to the XC energy is analogous to the TF approximation
in Fig. 1. While there are many excellent approximations that
improve over the local approximation by typically an order
of magnitude, they are usually tailored to specific systems or
properties, and contain either empirical parameters'® or at
least careful selection of exact conditions to impose on an
approximation to fix the parameters nonempirically.!” Our
formulas are derived via a semiclassical analysis that yields
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unique approximations, are robust, and typically two orders
of magnitude better than the local approximation.

The semiclassical result for the density was given in a
short report'® but the KED formula derived there failed close
to the boundaries. Here we explain that failure, in terms of
boundary-layer theory!'®?° but applied to sums over eigen-
states rather than individual solutions to a differential equa-
tion. By identifying our limit, we can then cleanly separate
the two different length scales in the problem. Earlier
approaches'*?! yield only the asymptotic result in the inte-
rior of the system (ironically labeled the outer region in
boundary-layer theory) but there exists a region close to each
wall (appropriately called a boundary layer) where that solu-
tion fails. However, within the boundary layer, a different
asymptotic expansion applies and, by matching these two
solutions, we construct a uniform approximation that is
asymptotic to a given order everywhere in the system. Many
different aspects of these issues have been addressed over the
decades since the original work of Kohn and Sham.!'* For
example, Balian and Bloch,?? in the context of nuclear phys-
ics, identified the need for spatial averaging to approach the
limit. In the early 1970s, Yuan and Light**?* and
co-workers> developed the theory in terms of path integrals
and density matrices. Recently, Ullmo, Baranger, and
co-workers?®?7 studied the nature of quantum oscillations in
application to quantum dots.

What is the significance of our results for the real world
of three-dimensional (3D) interacting electrons? Our results,
for a very different case, reveal the nature of the corrections
to local approximations. These will differ in detail depending
on the dimensionality of the system or the specific functional
being approximated. However, qualitative features (such as
the local approximation becoming exact in the classical con-
tinuum limit, gradient expansions being invalid near turning
points, etc.) are general. Thus our analysis can (and already
has?®) provided guidance for the construction of XC density
functionals. On the other hand, there is also a considerable
amount of work done in the field of orbital-free DFT (Refs.
29 and 30) but effort is focused on finding an accurate ap-
proximation to the noninteracting kinetic energy as an ex-
plicit functional of the density. The present work derives
potential functional approximations, an entirely different
matter, and so has no overlap with existing work in that field.
Our work suggests that the potential is a better variable than
the density and we show how corrections to local approxi-
mations of the density and KED can be derived as potential
functionals for simple model systems but the methods and
results shown here do not readily generalize to three dimen-
sions.

This paper is divided as follows: in Sec. II, we introduce
our notation and define the continuum limit and show that
local approximations become exact in this limit. Next, in
Sec. III we derive the leading corrections for both the density
and KED as functionals of the potential by explicit summa-
tion of WKB orbitals. Then, in Sec. IV we “fix” the difficul-
ties at the walls to produce a uniform approximation every-
where, and then study its properties comparing to the exact
result both in the classical continuum and the large-N limits.
Finally, in Sec. V we discuss the implications and relevance
for real electronic structure calculations. In the Appendix we
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give a detailed derivation of the interior solution of the den-
sity and the KED using the WKB Green’s function in the
complex plane, just as has been done before.

II. CLASSICAL CONTINUUM

In this section, we introduce our notation and briefly re-
view the salient points known from the literature. As dis-
cussed in Sec. I, we restrict ourselves to noninteracting par-
ticles in one dimension. We use atomic units throughout
(e?=fhi=m,=1) so that lengths are expressed in Bohr radii,
and energies in hartree.

A. Background and notation

We write the Hamiltonian as

2
=f+0=———+v(x), 1
S o) (1)
where a hat denotes an operator with 7 being the kinetic-
energy operator and v(x) the potential. We denote the solu-
tions to the Schrodinger equation as

hei(x) = €(x), j=12,... (2)

The solutions to the Schrodinger equation can be expanded
in powers of #,3! and retaining just the first two, we find the
WKB solutions for a given energy € are

WKB( ) _ 1_ i6(x)
$ = e (3)

and its complex conjugate, where the dependence on € is via
the definitions of the wave vector

k(x) =2[e-v(x)] (4)
and classical phase
0(x) = f dx'k(x"), (5)

where the constant is arbitrary. These solutions are exact
when the potential is constant, and highly accurate when the
potential is slowly varying on a scale determined by the en-
ergy. However, the particular combination that forms an
eigenstate depends on the boundary conditions. The density
is then

n(x) = }Tfﬂ de|pVEB(e,x)|? = Iﬁ’%, (6)

—o0

where kM(x) is the wave vector evaluated at u, the chemical
potential for the system, found via normalization. Note that
k,(x) is a function of w—v(x) alone, so we define the local
chemical potential

w(x) = p—v(x). (7

Then because WKB is exact for an infinitely extended sys-
tem with constant potential (free particles), we find
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nunif(,u) — 1(2;1,)1/2, tunif(,u) — L(zﬂ)3/2' (8)
T 61

The corresponding integrals are local potential approxima-
tions (LPAs) to the particle number and kinetic energy

Mwmm=fmwmwmx

T p(x)]= J dx 1" ((x)). )

Inverting the relation 7" x(x)] and inserting into 7™ w(x)]
yields the local density approximation to T

n(x)

7'°[n] = f dx *"(n(x)), Mn(x)]= e (10)

This is the one-dimensional analog of the TF KED functional
(up to simple factors of 2 for double occupation).??

One can also work backward from the LDA to the WKB
results. The LDA for the kinetic energy allows us to find an
approximate density for a given potential, by minimizing the
total energy subject to the constraint of a given particle num-
ber. This produces

2
?nz(x)+v(x)=,u., (11)

the TF equation for this problem, which is identical to Eq.
(6). The solution is the TF density, n™F(x)=n""(wu(x)). The
total particle number N is a continuous monotonic function
of the parameter u that is invertible for u>uv ,;,, the mini-
mum of the potential.

The leading corrections to the WKB wave functions, i.e.,
the next two powers in %, are well known!® and produce
constant corrections to both the phase and the wave vector.
Samaj and Percus®> showed very elegantly how the series
can be generated to any desired order. Continuing with the
higher-order corrections to WKB leads to corrections that
depend on derivatives of the potential, where v’ (x)=dv/dx.
The potential gradient expansion for the density is

GEA _ unif a v"(x) v'2(x) }
n A u(x)](x) =n (,u(x))[l 12ki(x) + Ska(x) +
(12)
and for the KED
uni 3 ”()C) 5 /2(x)
tGEA[M(X)](x) =t f(,u(x))[l - Zki + SI;cZ(x) + - }

(13)

which, when inverted leads to the density gradient expansion
for T
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an(x)
2n(x)

+n”(x)} + oo
(14)

Tn] = %J dx n’(x) - % dx[

A gradient expansion approximation is the finite truncation
of that series. Because the semiclassical expansion is
asymptotic, this is an asymptotic expansion for periodic sys-
tems where u is above the maximum of the potential. It can
be made arbitrarily accurate by application to sufficiently
smooth densities but for any given density, addition of suffi-
cient terms will eventually lead to divergence. For example,
a potential that contains steps will produce divergences be-
yond the lowest order. Also, Coulomb potentials are known
to vary too rapidly for such expansions to apply.’> We note
that, in 1D because of the negative coefficient in the gradient
correction, minimizing the total energy is unbounded and
nonsensical in the presence of this correction.>* We also note
that 7 never appears in the functional dependence on the
density in Eq. (14).

B. Classical continuum limit

We define a continuum as any region of energy in which
the eigenvalues of the Hamiltonian are not discrete. The first,
simplest example is that of a particle in a well, with a poten-
tial set that vanishes as |x|— 0. For €>0, there is the free-
particle continuum, with scattering states of the system that
cannot be box normalized. Another continuum arises in
solid-state physics, when we apply periodic boundary condi-
tions to our potentials, in order to simulate bulk matter. Then,
for single-particle states, the energy levels form distinct
bands, usually labeled by a wave vector. Within each band,
the energy is continuous. We call this the bulk or thermody-
namic continuum.

But any system also has a classical continuum, which can
be found by letting y— 0, where we have replaced 7 by y#.
As vy becomes very small, the discrete levels of the system
merge, and the envelope of their density of states approaches
a well-defined limit. We call this limit the classical con-
tinuum. While it has been long understood that local density
approximations become exact in this limit,? relatively little
attention has been paid to how exactly this limit is reached in
a quantum system.

Consider a 1D box of length L with given potential v(x)
and particle number N, i.e., the lowest N eigenstates are oc-
cupied. Then increase the particle number to N’ but choose

y=N/N' <1, (15)

i.e., fi is reduced in proportion to the increase in particle
number. Of course, there will now be N’ particles in our
well, so define

_ N

o) = () (16)

as a renormalized density, whose particle number matches
the original value at y=1. This process is illustrated in Fig.
2, where we plot renormalized densities for several particle
numbers N', and the TF result in the same potential as used
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Density

FIG. 2. (Color online) TF and renormalized exact densities for
N’=1, 4, and 16 particles in v(x)=—12 sin*(mx),0=x=1, showing
approach to continuum limit.

for Fig. 1. One can see how our procedure reproduces the TF
density, almost. As N’ grows, the oscillations in the interior
of the box become smaller [with an amplitude of O(1/N")],
while at the edges [within O(L/N') of the wall], the exact
density always drops to satisfy the boundary condition while
the TF density does not. So we also define a moving average
of a function of x as

x+Ax/2
<n(x))Ax=f dx'n(x")/Ax. (17)

x—Ax/2

The length scale of the moving average is chosen to be much
larger than that of the quantum oscillations of the exact den-
sity and of the boundary region at the wall but still vanishes
as y— 0. Then, finally,

1in(1)(ﬁy<Nr’#)(,u,x))\;:/L = n},F(x). (18)
'y*)

Thus we see that the TF density in a given problem is the
limit as y— 0 but the convergence is highly nonuniform. At
the walls, the true density is always zero but the TF density
is finite. There are likely many other averaging procedures,
such as taking the limit as a finite temperature vanishes,
which can be used to define the limit but the current one is
sufficient for our present purpose. Similarly, we define

r(x)= y?’ty(x).

III. LEADING CORRECTIONS TO LOCAL
APPROXIMATIONS

In this section, we derive the leading corrections in 7y
semiclassically, using only elementary techniques, for the
sake of transparency. The first such derivation was by Kohn
and Sham,'* using a very elegant analysis of the properties of
the Green’s function in the complex plane. We include an
appendix in which we also derive our results via this method.
In this section, we simply derive formulas for large N and
extract the vy dependence from such formulas.

A. Density

As in Sec. II, the density of N noninteracting fermions is
approximated by the sum of the squares of the WKB orbitals,
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normalized and satisfying the boundary conditions. Because
we are deriving the leading corrections, we carefully normal-

ize here
O (Z)T sin 6,00, (19)

where the normalization constant is found by ignoring the
oscillating term. Define

T odx
Tj(X)=L %

the classical time for a particle in level j to travel from 0
to L. Thus, in WKB theory, the density is approximated by

7= (L), (20)

KB cos 26:(x)
(x) = ,21 —W (21)

Performing the sum exactly yields nothing other than the
standard WKB approximation to the density as the sum of
WKB densities.>® However, such an approximation is incon-
sistent, since it retains the discrete nature of the eigenvalues,
and will not yield a sum with a well-defined expansion in 7.
We wish to develop approximations that are smooth in #, and
yield the exact approach to the classical continuum limit,
ignoring the discrete nature of the eigenstates, i.e., we wish
to build in the smooth envelope of functions such as the
density. At the end, we requantize our results, and find more
accurate summations than WKB, even for N=1.

Begin with the smooth (nonoscillating) contribution. We
use the Euler-Maclaurin formula in the following form:

N+1/2 1

where prime denotes a derivative with respect to j and a
subscript F' denotes evaluation at the upper limit of the inte-
gral, jg=N+1/2, while a subscript m denotes evaluation at
the lower limit, j=1/2. This is an expansion for sums in the
same parameter as for the WKB eigenfunctions, i.e., gradi-
ents of the potential. We retain only the first two terms, con-
sistent with our WKB approximation for the orbitals.

To expand the sum of the smooth term in such powers, we
need to relate the level index j with the energy in a continu-
ous fashion. Write the WKB quantization condition as

0= 0E,L)=jm, j=12,... (23)

which defines €;, the WKB eigenvalue implicitly. Then dif-
ferentiation yields

@) Te—71' (24)

where p.=&:= €y, . This allows us to apply Eq. (22) to the
smooth contribution from Eq. (21). Define

L
25
0= o 25)
which has units of inverse length and whose j dependence is
typically weak, vanishing entirely for a flat box. Then
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N

N+172 ki
S~ [ am=[TE e

j=1 12 k

m

where we have neglected terms that contain derivatives of «;
at the end points. Thus

N

2 Kj(x) =

J=1

[kF(x) - km(x)]//n-’ (27)

where the quantities in the integrand of Eq. (26) depend on j
in a continuous manner, kp(x)=v2u(x) and wu,, satisfies the
quantization condition in Eq. (23) with j=N+1/2, while
k.,(x) is the same but with N=0.

The oscillating term in Eq. (21) is more delicate. For each
x, we expand 6;(x) about its value at the Fermi level linearly

aj(-x) = Op(x) = (p = Jap(x) + -, (28)
where
&)= 0/(x)=m Tx) (29)

J

If we truncate at this level, and use the geometric sum de-
fined by

N 1—
K%)= 7=z (30)
1 -
and using z=exp[i2ap(x)], we find
N cos 26,(x) _ ko(x)  kp(x) sin 26p(x) 31)
= ki(x) T, oo 2 sin ap(x)

The first term here exactly cancels the second term of the
smooth contribution in Eq. (27). It is found from performing
the geometric sum, using Eq. (28) to undo the linear approxi-
mation at the lower end of the sum in Eq. (31). Hence, the
semiclassical density is

N () = ng(x) + noge(x), (32)
where s denotes the smooth term,
k (x)
ny(x) == (33)

and osc, the oscillating contribution, defined to have zero
moving average as y—0,
sin 2 6p(x)

Plose () = = 275 kp(x) sin ap(x)’ (34)

Note how completely different these corrections are from
those of Eq. (12). This is a central result of this work.

In general, the smooth term does not match that of TF
theory because it is evaluated at N+1/2, not N. This is not an
artifact of Eq. (22) but reflects the 1/2 electron loss of den-
sity in the quantum correction. We write Eq. (22) in a form
that avoids terms with f,, and f but the 1/2 term is indepen-
dent of any particular choice.

Note also that our semiclassical density is not normalized,
in general. For a flat box, the quantization does imply correct
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normalization but not more generally. It is straightforward to
find slightly modified definitions of 6(x), etc., that both nor-
malize the density and satisfy the boundary conditions (i.e.,
® =) but we choose to retain this error as a measure of the
error in our semiclassical approximations. We discuss this
fact and assess the error in Sec. IV A.

Finally, we can rewrite the result as

SO0 ) e, 69)

nge(x) =

where f(a)=1/sin @, w=sin(26), and

hop
S[Msc - U()C)]

is the small parameter, once x is not too close to the wall, and
wr=2m/Tg is the classical frequency of collisions with the
walls at the Fermi energy. To show the y dependence explic-
itly, replace N by N/vy and write

n(x) = (36)

7T [
2kAx) Ty

ﬁsc,y(x) = ynsc,N/y(x)
[ key(x) ~ sin 26 ,(x) )
-y ( T 2T kg o(x) sin o (x) ) (37)

where F, vy denotes evaluation at N/ y+1/2.

B. Kinetic energy density
A similar analysis can be applied to the KED but must be
done more carefully
N

i Mg
=3 L2 g7 =3 B0 con 2001,
J=1 J=1

(38)

where §j(x)=k12-(x) K;(x). First we evaluate the sum over the
smooth contribution using the same logic as for the smooth
piece of the density. Applying Eq. (22) we obtain

N o pE N+1/2
> 4 ;x) ~ {g; ;fd o). (39)

We know that the contributions from the lower end will be
cancelled by analogous contributions in the oscillating piece.
To evaluate that, we define

N

hP(2) = 2 (jp—j)Pe/ =z b
j=1

where 1P (z)=dh?/ dz.

Each term has many terms but only those containing a z"
will contribute to our answer because when we insert Eq.
(28) into Eq. (38), the prefactor contains z7V. Then

1 o ,
foeo(x) = — Em{ 621(9F—JF0/F)[§F KO _ & jA%Y)

1
+ =& h<2>} . (41)
2 z=e2iaR

Evaluating term by term yields

V'(2) = jg K D(z), (40)
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af ow 1
o 2& } (42)

Pw
tosc(x) { gF f 02 §F

The derivatives of & with respect to j can be written as
g =2mElk + kK (43)
and
g =2mEI + 6mKlIT;+ kK. (44)

We now drop all derivatives of «; because they vanish in the
flat box limit, yielding

_ k3 3 Fw

+37;3—2 w] (45)

Again, the explicit y dependence of this formula is found by
replacing N by N+1/2. As we shall show in later sections,
this result is less well behaved than that for the density. For
example, when the potential is nonuniform, the semiclassical
KED of Eq. (45) incorrectly fails to vanish at the edges.

To overcome this failure, we define the edge as being
those values of x up to some fraction 8 of a period of the
classical phase

Or(xp) = B (46)

such that the edge region is x<<xg and x> L—xz We choose
B=1/4 (and the interior is all the rest). This mimics the
approach used in boundary-layer theory for differential equa-
tions, which can be applied to the A expansion of the indi-
vidual levels. One constructs approximations that are correct
to a given order in the asymptotic expansion in each region
separately, and hopes to find a middle region where they
match, yielding a solution with uniform convergence
properties,'® i.e., with the correct asymptotic expansion for
any x. The only difference here is that we are applying these
ideas to the sum of levels, not the individual levels them-
selves.
Our final semiclassical approximation for the KED is

fo(x) i xg<x<L-xg

tie(x) = i) else, (47)
where
i) _ ( kumf)3 . (kmif)?2 .sin(2 Knify)
4L sin(mx/L)
T k%"if cos(x/L) cos(ZkI‘f-nifx)
417 sin®(mx/L)
. unif
- le,:ls?r(j:'l;/z)) (1 - sinz(irx/L) ) ’ (“48)

Hence, inside the edge region we approximate the KED by
mnlt(x) meaning that we evaluate Eq. (45) with the local
Fermi wave vector for a uniform potential, i.e., replacing kg
everywhere by k”‘“f—\Z,ugc and defining all other quantities
based on that. In particular, the classical phase and transit
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exact
16 ¢ [T
KED from Ref. 18 e
12 |
8 |
4 4
O 4

0 0.1 0.2 0.3 0.4 0.5

FIG. 3. (Color online) Exact and approximate ground-state
KEDs for v(x)=-12 sin?(7rx), where 0=x=1. The lowest eigen-
value is €y=—4.27 and u,.=5.52.

time become linear in x, as k" for the uniform system is
independent of x. Hence, the boundary conditions will al-
ways be satisfied, no matter what v(x) is. Outside that region,
i.e., in the interior of the box (xﬂ<x<L—xB), the nonlocal
kg(x) is used. We illustrate our approximations and the exact
KED for a single-well potential v(x)=—12 sin’*(mx) within
box boundaries in Fig. 3. Note that our present approxima-
tion of Eq. (47) is substantially more accurate for both the
edge region and the interior than the previously derived KED
of Ref. 18. In the next section we discuss this fact more
quantitatively.

IV. PROPERTIES

We next test our approximations, to demonstrate both
their accuracy and that they have the properties claimed for
them. We begin with several integrated quantities, mostly
energies.

A. Energies and normalization

The LPA yields densities that are local in the potential,
with the exception of the value of the chemical potential,
which must be determined globally. The quantum corrections
depend on several other terms, such as 6x(x) and Tg, which
are still simple functionals of the potential, but distinctly
nonlocal, depending on integrals over v(x). To test the inte-
grated properties of the density, we calculate moments over
that density. The obvious one is the third moment, as that is
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simply related to the local density approximation to 7, evalu-
ated on that density.

We choose a standard potential, v(x)=—10 sin?> 7x in a
box of length 1, and insert one particle. Both exact and ap-
proximate results are given in Table I. First note that the TF
result, T'F, is about 50% too small, compared to the exact
answer, 1. This is the result of minimizing the energy using
LDA as in the first term of Eq. (14).

We measure the quality of the TF density and our semi-
classical density by evaluating the LDA kinetic energy on
those densities, i.e., 7°[n"™]=T"" and 7'[n.], where the
point of reference is the LDA kinetic energy evaluated on the
exact density, 7'°n]. But the TF result remains about 50%
too small compared to 7'°[n]. However, the LDA on our
semiclassical density, 7°[n,.], yields an energy only 3% too
large, i.e., reducing the error by about a factor of 20.

To test our semiclassical kinetic energy, T, we compare
with the exact value, 7, and find an error of only 0.9% too
small, i.e., 50 times better than 7'F. Thus the semiclassical
results are more than an order of magnitude better than bare
DFT results because they include quantum oscillations. In
fact, the LDA kinetic energy evaluated on the exact density,
T[], yields only a 2.7% underestimate, showing that local
approximations do much better on accurate densities but still
not as well as our direct approximation, 7.

These systems do not appear to be particularly semiclas-
sical: the potential is neither flat nor is the particle number or
index high. We can analyze the source of this accuracy by
expanding integrated quantities in powers of y about 0

T(y)=TO+yTW 4+ P 7@ 4 - (49)
For the kinetic energy, from the previous discussion
70 =71 (50)
while our derivation should yield
=1, (51)

These results should hold for both the local approximation
applied to the exact density (and so test our semiclassical
density) and the exact kinetic energy (and so test our semi-
classical KED). In Fig. 4, we study the y dependence of
T[] applied to various densities for a generic well. Clearly
TF gives the y=0 value while the semiclassical density in-
cludes the correct linear contribution and is quite accurate for
higher-order contributions. We also note that inclusion of the
linear term greatly improves over the TF result but that the

TABLE 1. Exact and approximate quantities for one particle in a single-well potential v(x)=
—10 sin?(7rx), 0=x=1. T is the exact kinetic energy and » the exact density.

Energy levels € € ) Mse
-2.71 14.6 0.637 6.38

Kinetic energy T Tn]
Exact sc TF Exact sc
5.07 5.02 231 4.93 5.07

235128-7



CANG I et al.

1r exact X 1
fit-sg -rrerees
0 ‘ ‘ ‘ fit-exaqt
0 0.2 0.4 0.6 0.8 1
Y

FIG. 4. (Color online) LDA kinetic energy multiplied by the
scale factor vy for different y evaluated on nzF(x), our semiclassical
density nsc’y(x), and the exact density for a single-well potential
v(x)=-10 sin?(mx).

LDA kinetic energy evaluated on our semiclassical density is
even more accurate still.

Because our expansion is in powers of 1, we expect that it
is asymptotic, just as the WKB expansion is.!"” Thus, for
fixed N and 7, inclusion of additional coefficients in the
expansion will eventually worsen the result. We can see this
in Table II, where the error of our semiclassical result,
|T,.—T|, at y=1 is smaller than the error in the quadratic
coefficients, 2§§>—7<2>|, and thus cannot be explained in
terms of its approximation to that (or any higher) coefficient.
On the other hand, the asymptotic expansion with just the
first few terms in Eq. (49) becomes accurate very rapidly as
N increases. Compare the relative error of the quadratic co-
efficients of about 50% for N=1 with roughly 4% for N=2.
The error dropped by about an order of magnitude as the
number of particles increases by 1. To understand why that is
so, we next consider the N dependence of each contribution,
where N is now the number of particles at y=1. As N— o,
the box must appear flat. Evaluating the local approximation
on the flat box density yields

22113042
e [1+8<N +8 v I (flat)  (52)

fixing the first three coeffcients with the values above, and
the rest to vanish. The corrections to this flat limit can only
involve powers of 1/N, which we can either derive or find
numerically.

Since the leading term is given by TF theory, if we ex-
pand the potential in the box in a power series around its
average value, we find

loc| _
T)[n]=
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N 3802
TW=—F(1+ i)4+--- , (53)
6L (77)
where n=N/L and
L
vt = f dx [v(x) - 0]Y/L (54)
0

with 0 _the average of the potential over the well. For our
shape, dv’=D/8, yielding a TF value of 2.31, as in the fig-
ure. More importantly, we see that the leading correction to
the flat box result is O(1/N*). Similarly, we find by fitting,
that

70 =

2
37721\/( a b ) (55)

I+ —+—+-
1617 N N
and is given exactly by the semiclassical approximation. For
the specific choice of potential v(x)=—10 sin?(7x) the coef-
ficients are a=0.38 and b=-0.26. Finally,

2
o ™N (1+£+...>

but the coefficient ¢ is not given correctly by the semiclassi-
cal approximation. For v(x)=-10 sin?(mx) the exact value is
¢=0.42 whereas the semiclassical approximation gives about
half that value. Thus, all corrections to the flat results vanish
rapidly as N increases, and the errors of the first few semi-
classical terms in the expansion become much smaller, lead-
ing to a much more accurate value at y=1.

In Table III, we list the various kinetic energies as func-
tions of N for our well. Because the errors vanish so rapidly,
we subtract the energies of the uniform system, as in

AT =T - T™if

(56)

(57)

and likewise for AT'[n]. These differences could also be
thought of as the change in energy due to turning on the well
in the bottom of the box, analogous to the change in energy
when atoms form a molecule. We see that our approxima-
tions become very accurate very quickly, and converge as
1/N?.

The quantum correction yields a density that is not nor-
malized. This is because the requirement in Eq. (23) that the
phase vanishes at both x=0 and at x=L is used to determine
Mo NOt simple normalization. Of course, the error vanishes
rapidly as N —oe; for N=1, it is AN=4 X 1072 and for N=2,
AN=6X10"*. One can easily imagine schemes that patch
this failure up but we prefer to leave it as a measure of the
overall error in the approximation.

Since our formulas reduce to the exact results for a uni-
form potential, more generally, they should preserve these

TABLE II. Coefficients of y expansion in Eq. (49) of the exact and semiclassical kinetic energy, 7 and

7Y and the values T and T,

sc? S

. at y=1 for v(x)=—10 sin?(mx), where 0=x=1.

N 7 T 7® 7% T T,
1 2.31 2.05 0.614 0.900 5.07 5.02
2 134 9.78 1.69 1.62 249 247
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TABLE III. Local approximation to the kinetic energy evaluated on the TF, semiclassical, and exact
density, and the kinetic energy from direct integration of the semiclassical and exact KED, all relative to the
flat box value for N particles in a single-well potential v(x)=—10 sin> mx, 0=x=1. The errors of our
semiclassical result with respect to the exact result are denoted by Asc.

ATn] AT
N TF sc Exact Asc sc Exact Asc
1 -1.8 0.96 0.82 0.14 0.09 0.13 -0.04
2 -8.3 0.89 0.92 -0.03 0.08 0.24 -0.16
4 -32 0.77 0.78 -0.01 0.09 0.14 -0.05
6 =70 0.72 0.73 -0.01 0.07 0.09 -0.02
8 -123 0.70 0.70 0.00 0.06 0.07 -0.01

good features for a slowly varying potential. We have ap-
plied our density formula to many examples, and almost al-
ways found it to be remarkably accurate. This is because of
its excellent formal properties, and because we capture the
leading correction to the LPA in a well-defined (albeit
asymptotic) series. Most importantly, it appears that the con-
ditions of application, u, above v everywhere, imply that
these leading corrections always improve over the dominant
contribution.

B. Uniform convergence

While the most important aspect of our work is the recov-
ery of the leading asymptotic corrections to TF for the ener-
gies, the detailed spatial dependence is also important for
understanding how this is achieved, and also for understand-
ing the strengths and weaknesses of this approach.

Our semiclassical approximations are exact in the case of
a uniform potential, where they yield the simple formulas

| sin(27wNx)

n‘;,nif(x) =N (58)

2N sin mx

and Eq. (45) with f=1/sin(mx), w=sin(2wNx), and N
=(N/y+1/2). These offer some insight into the nature of the
expansion.

Consider first the density. For any finite value of x, the
oscillating contribution shrinks and oscillates more rapidly as

N—o0. Thus, we can expand the smooth part, the prefactor
of the oscillating contribution, and the phase of the oscilla-

tion, in powers of 1/ ]V, which is linear in 7y for small . On
the other hand, for Nx fixed, one can again expand the den-
sity for large N

n(y) =N {(1 - SiI;z”y) _ mysin@my) ] (59)
my 12N?

where y=ﬁx. The first term is precisely the profile of a semi-
infinite box at the surface. This series is very ill behaved for
large y, except for the lowest-order term. Similar comments
apply to the KED only more so, as several contributions

diverge for small Nx. Thus there are two distinct regions and

limits within the well, the interior and the edges.

In what follows we illustrate that the error of our semi-
classical approximations converges uniformly as y—0. We
define

Ansc(x) = nsc(-x) - n(x) (60)

as the error in the semiclassical density, and likewise for the
KED. We pick a generic single-well potential v(x)=
-5 sin’(7x) sufficiently close to flat so that we are in a re-
gime dominated by the asymptotic behavior. For illustrative
purposes we increase the extend of the edge region by choos-
ing B=0.7. The fractional error of the density in the interior
is shown in Fig. 5. The error converges uniformly throughout
the interior as y— 0, being O(y). As shown in Fig. 6, the
fractional error close to the edge of the box also converges
uniformly, being O(7y) but noticeably larger. The conver-
gence for the KED is shown in Figs. 7 and 8, and has the
same features as the density but is much larger.

C. Phase oscillations

We also check that the quantum oscillations of our semi-
classical formulas can be extracted from the exact results as
y—0. For a fixed point x we look at the difference between

0.002

-0.002

Anscyy(x) / nY(x)

-0.004

-0.006 - :
0 0.2 0.4

FIG. 5. (Color online) Fractional error in density for v(x)
=-5 sin?(mx); only shown in interior (6z/=0.7 in left half).
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FIG. 6. (Color online) Fractional error in density close to the
edge for v(x)=-5 sin?(mx), 6/ w=0.7.

the exact result and the smooth term, multiplied by the pref-
actor appearing in our formula for the quantum oscillations

d (x) = 2Tkp(x)sin a(x)Ang (x). (61)

If our results are correct, as y—0, this becomes a simple
function of Sg(x)/ vy, for any values of x and 7, specifically
—sin[28g(x)/y]. The same analysis applies to the KED,
where we define

4T sin a(x)
kg(x)

In Fig. 9, we plot gy(x) for several values of vy, as a function
of 26g(x)/r, finding results converging to —sin 26p(x), as
predicted by the leading term of Eq. (42).

g,(x) = AITYF. (62)

D. Evanescent regions

The only condition on the applicability of our approxima-
tions is that w, >wv(x) for all x, but u, is between the high-
est occupied and lowest unoccupied level, and so for many
well depths, it can be the case that the highest occupied
molecular orbital has turning points while the condition is
still valid. The starkest example is for N=1 since beyond
those turning points, the only occupied orbital is evanescent.
Yet our approximations can still be applied, even though they

0.02

-0.02

Atsc,y(x) / ty(x)

-0.04

-0.06 | =1 -

0 0.2 0.4 0.6 0.8 1

FIG. 7. (Color online) Same as Fig. 5, for KED.
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=18 ——

Atge (%) /1,(x)

FIG. 8. (Color online) Same as Fig. 6, for KED.

contain only trigonometric functions of the phase, and no
decaying exponentials, and still yield highly accurate results.
In Figs. 1 and 3 we show results for a well depth of 12, for
which the lowest eigenvalue is €,=—4.27 and u,=5.52, and
the turning points are located at around x=0.2 and x=0.8.

Eventually the quadratic approach of the semiclassical
density near the wall of the box mimics the exponential de-
cay of the true density. Even the KED truncated by our
method, only misses the negative contribution, which largely
cancels the error in the interior. The results for this well
remain remarkably accurate. As the semiclassical chemical
potential u. approaches v ,,, the validity of our approxima-
tion breaks down. We simulate such a situation in Figs. 10
and 11 by choosing a well depth of 27, such that u is only
slightly above v ... This is the worst qualitative breakdown
of our approximation, yielding the errors shown in Table IV.
But even here, errors are =20%.

V. CONSEQUENCES FOR DENSITY FUNCTIONAL
THEORY

This work has been confined to one-dimensional nonin-
teracting particles confined by hard walls. In this section, we
discuss in detail the ramifications for density functional
theory in the real world of atoms, molecules, and solids. We
divide the discussion in two: Thomas-Fermi theory and
Kohn-Sham theory.

FIG. 9. (Color online) Leading correction to the KED for y=1,
0.5, and 0.1 and v(x)=-10 sin*(rx).
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FIG. 10. (Color online) Exact and approximate ground-state
densities for v(x)=—27 sin?(mx), where 0=<x= 1. The lowest eigen-
value is €y=—16.3 and u,.=0.08. The position of the turning points
is indicated by dashed lines.

We begin with Thomas-Fermi theory and its extensions.
This was the original density functional theory and continues
to be used in many fields of physics. TF theory became ob-
solescent for electronic-structure calculations with Kohn-
Sham work but there has been a recent resurgence of interest
in orbital-free DFT, with the hope of treating systems of
much greater size than is presently possible with Kohn-Sham
calculations. To do this, all that is needed is an accurate
approximation to the noninteracting kinetic energy as a func-
tional of the density. The original approximation using uni-
form gas inputs, is simply the 3D analog of our 1D local
approximation used here. Thus if our methods could be gen-
eralized to apply to the general 3D case, it would produce an
orbital-free theory.

Perhaps the most important result of this study is to high-
light an alternative path. Instead of trying to find density-
functional approximations, we have derived the leading cor-
rections in terms of the potential, a perfectly valid alternative
variable to the density.?” If general formulas (or algorithms)
could be found for finding accurate approximations to
nlv](r) and t v ](r), where the subscript s denotes nonin-
teracting, one could use them to avoid solving the Kohn-
Sham equations and evaluating any orbitals. At each step in
the iteration, one finds v(r), the Kohn-Sham potential, using
some standard XC functional, and uses this to generate a new

PHYSICAL REVIEW B 81, 235128 (2010)
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FIG. 11. (Color online) Exact and approximate ground-state
KEDs for v(x)=-27 sin?(mrx), where 0=x=1. The lowest eigen-
value is €y=—16.3 and u,.=0.08. The position of the turning points
is indicated by dashed lines.

density. When self-consistency is reached, the kinetic energy
is evaluated and the many-body energy is found in the usual
way. A recent study?® shows that this procedure is correct
once both approximations are derived from the same ap-
proximate Green’s function, as ours have been.

Even before such generalizations have been found, we
have been able to use the results here to deduce information
on the 3D kinetic energy functional. In 1D, our results show
that the leading corrections to the asymptotic expansion of
the kinetic energy in powers of 1/N are not determined by
the gradient expansion for any finite system but instead are
given by the quantum corrections producing quantum oscil-
lations. Reference 39 is a careful study of the asymptotic
expansion for the 3D kinetic energy, and showed how gen-
eralizing the gradient expansion to ensure recovery of the
asymptotic expansion greatly improved total energies over
the gradient expansion but worsened other energies, such as
those of jellium surfaces. This reflects the difficulty in at-
tempting to capture different physical limits with simple den-
sity functional approximations. Even our simple results can-
not be easily encoded in a density functional approximation
but are both simple and (relatively) physically transparent as
potential functionals.

Almost all modern electronic-structure calculations are
performed within the Kohn-Sham formalism, which provides
a set of self-consistent noninteracting single-particle equa-

TABLE IV. Exact and approximate quantities for one particle in a single well v(x)=—D sin’*(mx), where

0=x=1.

Energy levels € € M Mse

D=12 -4.27 13.6 0.04 5.52

D=27 -16.3 5.47 -6.75 0.08

Kinetic energy T T7°n]

Exact sc TF Exact sc

D=12 5.13 5.18 2.66 5.12 5.33
D=27 5.74 7.63 4.80 6.42 8.47
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tions which reproduce the exact single-particle density of the
interacting system. In these, the noninteracting kinetic en-
ergy is treated exactly, and only a small contribution to the
total energy, the XC energy, is approximated as a functional
of the density. This contribution is determined by the Cou-
lomb repulsion, and so is a many-body effect.

So, do we learn anything from studying our little toy
problems? The answer is definitely yes. Our toy is perhaps
the simplest possible system in which one can meaningfully
approximate a Schrodinger equation with its density-
functional analog and make a local density approximation.
So we learn in what limits this becomes relatively exact, and
how to find the leading corrections. We learn the nature of
these corrections (asymptotic) and how there are mutliple
length scales in the system. While the details of these lessons
depend on the functional we are approximating, some gen-
eral features of functionals and their approximations can be
guessed at, and highly useful analogies can be made.

For example, there are many ways to understand why
Kohn-Sham calculations are far more accurate than Thomas-
Fermi type calculations, and our analysis produces one more.
A KS calculation, by virtue of its orbitals, produces an in-
credibly accurate density, and we have seen how local-type
approximations are much more powerful on accurate densi-
ties than on self-consistent densities. Thus not only does a
Kohn-Sham calculation approximate only a small fraction of
the total energy (the XC piece) but even that part is much
more accurately given by a local approximation by virtue of
the accurate density.

The insight based on the semiclassical analysis of func-
tionals has already led to significant development in the
Kohn-Sham XC functional. Schwinger demonstrated*®*! that
LDA exchange becomes relatively exact for large Z neutrals.
Analysis of the large-Z behavior of modern exchange GGAs
(Refs. 42 and 43) shows that the most popular functionals all
recover (to within about 20%) the leading corrections to the
LDA asymptotic behavior of exchange for atoms. On the
other hand, the gradient expansion approximation, based on
the slowly varying limit, does not, being too small by almost
exactly a factor of 2. This is entirely analogous to our prob-
lem in which the local approximation recovers the exact
dominant term and a decent approximation to the next cor-
rection but the gradient expansion worsens that agreement.
Since such functionals are tested on the exchange energy of
atoms, and these cannot be accurate without accurate
asymptotic values, this is vital for recovering accurate ther-
mochemistry, which requires accurate atomic energies. On
the other hand, bond lengths depend only on small variations
in the energy when the bond distance is varied slightly
around its equilibrium value, and so do not require accurate
energies of isolated atoms. These can be improved upon over
regular GGAs by restoring the true gradient expansion and
ignoring the asymptotic limit. The recent PBEsol
functional®® does exactly this for exchange and produces bet-
ter lattice parameters for many solids.

VI. SUMMARY

We have presented a fuller and more precise account of
the results originally shown in Ref. 18. Kohn and Sham'*

PHYSICAL REVIEW B 81, 235128 (2010)

produced asymptotic expansions for the interior, exterior,
and turning-point regions of the density. In Ref. 18, we pre-
sented a uniform approximation for the interior region but
only an asymptotic approximation for the KED. Here, by
analyzing the breakdown of the method for the boundary
regions, we have produced a (nearly) uniform approximation
to the kinetic energy.
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APPENDIX: DERIVATION OF THE SEMICLASSICAL
DENSITY AND KINETIC ENERGY DENSITY IN
THE COMPLEX PLANE

The semiclassical corrections were derived from a con-
tour integral over the semiclassical Green’s function in Ref.
18, and we give a fuller account here. The method is well
described in Ref. 14 but we go beyond the aims there, since
we require our solution to be uniformly asymptotic, not just
producing the correct asymptotic expansion in the interior
and we extract also the KED. We are also treating box
boundary conditions, rather than the turning points discussed
there. Begin with the diagonal Green’s function

26000 al0)
g(x7 E) - W( 6)

where  W(e)= ¢y (x) dPr(x)/ dx— Ppr(x) d(x)/dx is the
Wronskian, and approximate the two independent solutions
¢, (x) and ¢r(x) via the WKB wave functions satisfying the
boundary conditions

; (A1)

AP (x) = sin[ 6(x) )\ k(x), (A2)
WKB() = sin[ (L — x)JVk(x), (A3)
yielding
0 - 20(x) —
gl = BT O] (0 gl
(A4)
Thus,

d
nsc(x>=3§ 2—6.gsc<x,e)=ns<x)+nosc(x>, (A5)
Clug) <™

where C(u,.) is a contour enclosing all poles of occupied
states determined by .

First we evaluate the density coming from the smooth
term. In the limit L — oo this is dominated by exp[—i®], sim-
plifying the integral to

) 1 de
n(x)=—— ,
s 2m ) e klx.€)

(A6)

which, evaluated on the real axis, yields
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FIG. 12. Contour of integration in the complex € plane.

() = 1 J”SC de  kplx)
e o k(x, e

v

(A7)

Then, we evaluate the oscillating term of Eq. (A4). We pick
a contour C(ug) as shown in Fig. 12, i.e., a vertical line
along e=pu,+i{ connected to a semicircle, which encloses
all poles of N lower-lying energy eigenvalues €y, ..., €. In
the classical continuum limit u, > ¢, allowing us to expand
all quantities in the integrand in powers of the imaginary part
of the energy, ¢

! _ 1 i
kwwz,x)‘kF<x><1‘k§<x>+ ) (48)
Bt + iL.) = O(x) + iL75(0) + (A9)

Keeping terms up to first order in , employing the semiclas-
sical quantization condition for the given boundary condi-
tions in Eq. (23) with j=N+1/2, and substituting u=4Tg{,
we obtain the result in Eq. (35). Note that the additional term
of 1/2 in the quantization condition relative to Ref. 14 is due
to the Mazlov index for a hard wall being 0, rather than 1/4
at a real turning point.

Next, we provide some details of the lengthy derivation of
the KED of noninteracting, same-spin fermions

2 e 000 86, = 1,00 + 1),

tsc(x) =
Clug) 27T

(A10)

In analogy to the derivation of the semiclassical density we
first evaluate the smooth term yielding

kF(x)

AD(x) = == (A11)

The subdominant piece of smooth term gives another contri-
bution
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tgz)(x) _ ﬁk(x, e)oexp iO(e) (A12)
Cluy) 2 4 sin B(e)

is evaluated on the contour C(u,) as shown in Fig. 12.
Hence, all quantities in the integrand are expanded in
powers of . In particular, we define s=-2iI"({), where
T(9) = [{dx V2 pee(x) +iZ]=\2uge(x)], express the ¢ expan-
sion of all quantities in terms of s({), and truncate its expan-
sion after the quadratic term. Note that we approximate
terms such as [ [ 6dx/k2(x)]/TF by 1/ k%(x). This amounts to
the same as neglecting the derivatives of «;. Then we obtain

1 * 5z
(2)
t = d -, Al3
S ZWkF(x)T}%fO Y- (A13)
where z=exp[2i®g], which yields

)

D) = - , Al4

S 24 kg(x) Tg ( )

where the total contribution of the smooth term is the sum of
til) and tgz), in agreement with Eq. (39). Then, we evaluate
the oscillating term, which is integrated also along the con-
tour C(u) in Fig. 12.

We write the cosine of the oscillating piece as a weighted
sum of exponential functions and demonstrate the derivation
for the term that has the positive sign in the exponential
function. We call this term tf)sl

As before we expand all quantities in powers of (.
Here, we define g=-4il"({), express the { expansion of
all quantities in the integrand by ¢(¢), and truncate its
expansion after the quadratic term. Then we integrate by
aid of the polygamma functions of order n,** defined as

YD) =(=1)"*"[5dg q" exp(=lg)/[1-exp(-¢)], yielding

== o5 of3 2
F

| 1) ﬂ)]
167TkF(x)TF[W( ( ) 4 ( 2 ) |os 26
. y+1y) - )(Zﬂ-
1287TT3kF(x)[¢(2< ) v\ ) |sin 2660).

(A15)

Similarly, the other term tf)s)c integrates to the result in Eq.

(A15) with y——y+1, where y=ap(x)/m. The partlcular
combination of the polygamma functions in t(A) and tgsl
yields

7 cos ap(x) cos 26g(x)
4kp(x) le: sin® ap(x)

7 sin 2 6x(x) ( 1 1

- 8T§: k%(x) sin ap(x) \2 -

kF(X) sin 20F(.X) _

1o =-
OSC(X) 4TF sin aF(x)

). (A16)

sin ap(x)

Finally, the sum of the smooth and oscillating pieces yields
the result of Eq. (45).
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